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1. SURFACE EMISSION OF THE GEMINGA PULSAR

1.1. Summary

The Geminga pulsar wasobservedby the ROSAT PSPC for 37,000 s in September

1993, in order to make a more detailed study than was possible previously of the pulse

profile and two-component spectrum, and to do phase-resolved spectroscopy. This exposure

was 2.5 times longer than the original discovery observation. In addition, a shorter 4,000 s

exposure was made in October 1992, simultaneously with a GRO observation of Geminga,

in order to verify the absolute phasing of the X-ray and 7-ray peaks.

We verified that the spectrum can be described as the sum of two black bodies, whose

temperatures are 6 x 10 _ K and 3 - 4 × 106 K, with the latter covering 3 x 10 -5 the area

of the former. The pulse profiles indicate that the intensity of the two emitting regions

peak ,-_ 90 ° out of phase in rotation, but that the temperatures are otherwise independent

of phase. An improved estimate of the distance can be made from the cooler (larger)

blackbody component, yielding d = 440 -t- 120 pc.

1.2. Pulse Profiles and Timing

The pulse profiles of the three PSPC observations of Geminga are shown in Figures 1,

2, and 3. In each Figure, the top panel represents the full energy band over which photons

are detected, and the lower three panels are the same data broken into three different

energy bands. The October 1992 and September 1993 profiles are basically consistent

with the orginal (March 1991) data as published by Halpern & Holt (1992) and Halpern 8z

Ruderman (1993). The latest observation affords the most detailed look are the light curve.

The soft bands, 0.08-0.28 keV and 0.28-0.53 keV, have roughly the same pulse profiles and

pulsed fractions, while the 0.5-1.5 keV data are dramatically different. Above 0.5 keV, the

phase of the peak changes by about 90 °, and the pulsed fraction approaches 100%. These

results are consistent with our original interpretation, namely, that the inclination angle
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of the magnetic dipole is large, and that the two hot polar caps are close together on the

surfaceof the star so that they present only one pulse peak per rotation. However, there

is still no explanation for the shapeand phaseoffsetof the lower-energy data, which must

be coming from a large fraction of the surface of the neutron star. A preliminary attempt

at pulse phase spectroscopy using this latest observation is described in the next section.

All three PSPC observations of Geminga were corrected to the Solar System barycen-

ter using the latest version of the timing rountines in PROS (2.3.1). Using the most recent

and accurate EGRET ephemeris (Mattox 1994), we have verified that the three ROSAT

light curves maintain the same pulse-phase relationship over the 2.5 year interval between

March 1991 and September 1993. However, there seems to be an offset of 1 second in

the 1993 timing because the leap second of July 1, 1993 was not added in the PROS

barycentering code. We must add this 1 second in order for the latest observation to phase

correctly with the previous two, and we assume that this is the correct solution of the

problem. The absolute phase with respect to the ")'-ray pulse is still uncertain because

the ROSAT times are expressed in UTC, rather the TDB (Barycentric Dynamical Time)

in which pulsar ephemerides are usually expressed. We are currently checking (with the

help of Frank Primini) the reliability of the PROS barycentering code, the accuracy of the

ROSAT spacecraft clock, and will convert the photon times to TDB if it seems that this

can be done reliably.

1.3. PSPC Spectra

The PSPC spectra can only be fit by a two-component model. We have considered

two types of models. One consists of a pair of blackbodies, and the other consists of a black

body plus a a power-law. These models fit equally well to within the expected errors, and

much tighter limits on the parameters are obtained with the most recent long exposure

than were possible with the original, published data. The best fits are shown in Figures

4 and 5. In both cases, we have searched the the full four-dimensional Chi-square grids

-2-



(e.g., T1,T2NH, A2/A1) to derive errors on the spectral parameters. Figure 6 shows the

confidence limits for the soft blackbody temperature T1 and NH. Figure 6a is the result

for the double blackbody model, and Figure 6b is for the blackbody plus power-law. The

temperature is either 6.1 ± 0.5 × 105 K, or 5.6 4- 0.8 × 105 K, depending on which model

is chosen. In both cases, the derived column density is close to 1.0 × 102o cm -2, which

is consistent with the measurments of NH in this direction to stars at distances of several

hundred parsecs.

An independent estimate of the distance can be derived by assuming that the soft

blackbody component comes from the full surface of a neutron star of radius 10 km and

making use of the normalization constants in the spectral fits. The resulting contours of

equal distance are shown in Figure 6. In the case of the double blackbody fit, a distance

of 440 4- 120 pc is indicated. This is slightly larger than, but consistent with our published

estimate of 250+ 150 pc based on the original data. For the blackbody plus power-law fit, a

slightly smaller distance of 350 4-150 pc is found. Either of these results are consistent with

the proper motion of Geminga as compared to typical velocites of pulsars (Lyne _ Lorimer

1994), and support the model in which Geminga is a highly efficient ")'-pulsar emitting by

the outer gap mechanism. In fact, Yadigaroglu & Romani (1995) have independently come

up with an independent, theoretical estimate of 400 pc based on such a model.

Figure 7 shows the confidence contours for the properties of the harder blackbody

component. The temperature is 3.8 ± 0.7 × 106 K, and the fractional area occupied by

this component is only ,,_ 3 × 10 -4 of the surface. This is ,,_ 10 times smaller than would

be expected for the open-field line polar cap region, which indicates that the heating

mechanism is probably not effective along the full open field-line bundle. Alternatively,

the harder component may be represented by a power-law. Fits to this model indicate

that the power-law energy index is 1.0 ± 0.4.
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1.4. Phase-ResolvedSpectroscopy

We have made a preliminary attempt at calculating spectra for particular rotation

phases. A detailed application of this analysis is still in progress. The folded data were

first divided into five phasebins, asshownin Figure 8 (the total data set for the September

1993observation). Then the five individual pulse height spectra were normalized by their

effective exposure times, and divided by the averagespectrum. The resulting "ratio"

spectra are displayed in Figure 9. Any change in the soft blackbody temperature with

rotation phasewould make itself evident as a change in slope of the points between0.1

and 0.5 keV. It can be seen that the temperature is roughly constant with phase, with

perhapsa slight decreasein phasebins 1 and 5 where the intensity is smallest, and a slight

increasein the other phasebins. This is consistent with a model in which the modulation

of the soft blackbody component is due to small differencesin temperature over the surface

of the star. This will be testedfurther with detailed spectral fitting. The statistics are poor

on the harder componentbecauseit contains few photons, even in the summed spectrum.

Nevertheless,the temperature at harder energiesappears to be greatest in phase bin 2,

which contains the peak of the hard component (since it leads the soft pulse by about

90°. Overall, the spectra and pulse profiles appear consistent with our two-temperature

model, in which rotation is responsiblefor carrying the emissionregionsin and out of view

without greatly changing their apparent temperatures.
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2. NARROW-LINE SEYFERTS WITH PERMITTED FE II EMISSION

The purposeof this program is to obtain PSPCspectra of an important class of Seyfert

galaxies which have narrow lines and strong permitted Fe II emission. Sometimes called I

Zw 1 objects, or narrow-line Seyfert ls, they are crucial to our understanding of Seyfert

classification and models of Seyfert unification. Previous to the ROSAT observations, only

three of these objects (I Zw 1, Mkn 957, and Mkn 507) had Einstein X-ray data (Halpern

Oke 1987). We observed four new objects, and in addition obtained data on 17 more

from the ROSAT archive. The basic properties of these objects are listed in Table 1, and

a log of their ROSAT observations is given in Table 2. The results of our spectral fits to

simple power-law models, which provide adequate fits in most cases, are described in Table

3. A selection of XSPEC spectral fits and residuals are shown in Figures 11-23.

Most notably, we have found that even though they have narrow emission lines like

Seyfert 2 galaxies, the X-ray luminosities of I Zw 1 objects are typical of Seyfert ls. In

addition, their spectra are significantly softer than those of either Seyfert 1 or Seyfert 2

galaxies, showing no evidence for absorption or scattering. In fact, they are often rapidly

variable in X-rays, which proves that we have a direct and not a hidden view of their

nuclei. Figure 10 shows a light curve of Mkn 957 (=5C 3.100), which displays a rapid dip

in flux near the end of the observation.

These results are even more paradoxical in view of the fact that I Zw 1 objects usually

have a high ratio of far-infrared to bolometric luminosity, which would be interpreted as

evidence for a large covering fraction of obscuring material. We have also found a number

of new such objects in the ROSAT/IRAS All-Sky Survey (Moran et al., in press). We

are investigation possible correlations between X-ray spectral slope and either Balmer-line

width or Fe II line equivalent width (Forster et al., in preparation).
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3. DIFFUSE EMISSION AND PATHOLOGICAL SEYFERT SPECTRA

This program combinesPSPC and HRI observationsof selectedSeyfert galaxieswhich

have unusual and vraiable spectra. The purpose is to disentanglediffuse X-ray emission

from the nuclear source, in order to properly interpret the soft X-ray spectral shapesin

terms of partial covering and/or warm-absorber models. The targets in the program are

NGC 3516,NGC 3227,and NGC 7314. Sofar, wehaveperformed a detailed analysisonly

on NGC 3516, and we summarize the results here.

NGC 3516 is historically the Seyfert galaxy with the highest degreeof soft X-ray

variability. In addition to intrinsic variability of at leasta factor of 30, the apparent column

density has ranged from > 1024to essentially zero. NGC 3516also displays variable UV

absorption lines of the type that are sometimesthough of as low-velocity analoguesof the

samephenomenonin BAL QSOs. Figure 24 is our PSPC light curve, which indicates that

there was variabilty of about 25% in one day. The power-law spectral fit displayed in

Figure 25 shows the classic signature of deviations due to a warm absorber. Indeed, a fit

to a warm-absorber model (Figure 26) is a good fit, with an edgeof optical depth 0.9 at

0.75keV that can be attributed to O VII with a column density of 4 × 1018,equivalent to

a hydrogen column of 5.7 × 1021. Otherwise, there is no significant cold column abovethe

Galactic value of 3 × 102°. Dividing the data into high and low states (Figures 27 and 28)

revealnosignificant differencesin the parametersof the absorption edge,asthe overlapping

confidencecontours in Figures 29and 30demonstrate. Given that the intensity changedby

only 25_, it is not surprising that the properties of the warm absorber remained roughly

the same.

We plan to combine thesedata with historical X-ray spectra and ASCA spectrum

that we have also obtained, in order to specify the state of the warm absorber, and relate

it to the UV absorption lines and large-amplitude historical X-ray variability.
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4. NGC 1672: THE SECOND BRIGHTEST SEYFERT GALAXY

This object is a nearby,southern Seyfert 2 galaxy,and oneof the original "composite"

Se_ert/starburst galaxieswhich haveevidencefor both Seyfert activity and H II regions

in their optical spectra. It is one of the lowest luminosity Seyfert 2 galaxies that can

be studied in detail. We have obtained both PSPC and HRI observations in order to

disentangle the emissionfrom nuclearand starburst activity, both spectrally and spatially.

The analysis is still in its early stages,but wedo seeboth nuclearand off-nuclear sources.

Figure 31 shows the HRI imgage in which the nulear source is the strongest, although

it is possibly extended. In addition, there are discrete sourcesstraddling the nucleus in

the east-westdirection that are probably associatedwith the star-forming bar that is also

oriented in this direction. All of thesesourcesare detected in the PSPC as well, and we

plan to do a spatial and spectral analysisof their separateproperties.

-7-



Table 1. Narrow Line Seyfert Galaxy Sample

J2000 Coordinates

Name Other Name a (5 z_ Class

Mkn 335 PG ooo3+199 00 06 19.5 20 12 10.4 0.0260 Sey 1

Mkn 957 5coa,oo 00 41 53.4 40 21 17.4 0.07382 Sey 1

I Zw 1 PG oo5o+124 00 53 34.9 12 41 36.2 0.0627 Sey 1

Mkn 359 mASO1248+1s_ 01 27 32.5 19 10 43.8 0.01681 Sey 1.5

PHL 1092 q 0,37+060 01 39 55.8 06 19 21.3 0.3961 QSO ?

Mkn 1044 IRASrO2276-o913 02 30 05.4 -08 59 52.5 0.0166 $ey 1

Mkn 1239 mASO9497-Ol_ 09 52 19.1 -01 36 43.4 0.0196 Sey 1

Mkn 42 mASrllSlO+46_9 11 53 41.7 46 12 42.1 0.0243 Sy 1

PG 1244+026 IRAS r,_44o+o_as 12 46 35.2 02 22 08.3 0.0481 Sey 1

IRAS 13224-3809 13 25 21.1 -38 24 41.0 0.06671 Sey 1

PG 1404+226 14 06 21.9 22 23 46.6 0.0981 ??

Mkn 478 v_ 144o+3s6 14 42 07.5 35 26 22.9 0.0828 Sey 1

Mkn 486 PG 15_s+547 15 36 38.3 54 33 33.2 0.0389 Sey 1

PG 1543+489 IaASrl_439+4s_ 15 45 30.2 48 46 08.9 0.4001 QSO ?

Mkn 291 mAS F15529+1920 15 55 07.9 19 11 32.8 0.0352 Sey 1

Mkn 493 mAS ,5572+35,o 15 59 09.6 35 01 47.5 0.0321 Sey 1

IRAS 16319+4725 16 33 23.0 47 19 03.4 0.11631 ??

IRAS 17020+4544 17 03 30.3 45 40 50.3 0.06041 Sey 2

1747.3+6836 vii z_ 742 17 46 59.6 68 36 28.4 0.0631 Sey 1

Mkn 507 mAS 174sg+6s43 17 48 38.3 68 42 15.9 0.05591 Sey 2

Mkn 896 mAs 2o43_-o_59 20 46 20.8 -02 48 45.2 0.0265 Sey 1

_Redshifts have been obtained recession velocities using the expression:

1 + z = [(e + V)/(c - V)] 0.s

1 From RC3. 2 z=AA/A was given in Burbidge (1970). s Redshifts adapted from observations of USS X-ray

Survey AGN, Puchnarewicz et al 1992.
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Table 2. ROSAT Observation Log

Name Seq ID PI Date Exposure _ CTR b

Mkn 335 rp700101 Turner 1991 June 29 - 30

Mkn 957 wp600079 Truemper 1991 July 14 - 15

I Zw 1 wp700260 Lawrence 1991 Dec 31

Mkn 359 wp701220 Mittaz 1992 July 15

PHL 1092 wp700259 Lawrence 1992 Jan 19 - 22

Mkn 1044 rp700792 Halpern 1992 Aug 9- 10

Mkn 1239 rp700908 Malkan 1992 Nov 8

Mkn 42 rp700791 Halpern 1992 Dec 4 - 5

PG 1244+026 rp700020 Elvis 1991 Dec 22 - 24

IRAS 13224-3809 wp600419 Boller 1992 Aug 10 - 12

PG 1404+226 wp700227 Ulrich 1991 July 11 - 12

Mkn 478 wp700559 Gondhalekar 1992 Jan 17

Mkn 486 wp701196 Meurs 1993 Feb 8

PG 1543+489 rp700808 Laor 1992 Aug 22 - 23

Mkn 291 wp300167 Mason 1992 Feb 27

Mkn 493 rp700096 Halpern 1992 Feb 1 - 29

IRAS 16319+4725 wp701549 Bade 1993 July 24

IRAS 17020+4544 wp701153 Meurs 1992 Aug 28

1747.3+6836 wp701523 Boller 1993 Aug 8 - l0

Mkn 507 wp701523 Boller 1993 Aug 8 - 10

Mkn 896 rp700793 Halpern 1992 Nov 10

1993 Apt 22

24586 1.721

42164 0.075

3505 0.799

3189 0.787

7786 0.283

2830 2.073

9051 0.067

4433 0.229

5566 1.000

20136 0.324

10141 0.301

2393 2.004

2792 0.066

7181 0.115

3816 0.066

8172 0.352

3880 0.240

2644 0.774

24754 0.274

24754 0.033

9587 0.443

aTotal accepted time in seconds.

bCount Rate, background subtracted, in counts s -1 through PI channels 3-34 (see §2).
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ABSTRACT

Luminous star-forming galaxies have often been suggested as potentially significant contributors to the
cosmic X-ray background (XRB). Interest in this possibility has been rekindled by a recently published sample
of 244 IRAS/ROSAT galaxies that includes 20 with extreme X-ray luminosities (Lx = 1042 44 ergs s- 1) that
are claimed to be "normal" spiral galaxies. To investigate whether or not these 20 X-ray-luminous spirals are
truly normal star-forming galaxies, we have reexamined their classifications by obtaining new optical spectra
of 13 of them, and by locating spectra in the literature for four. Our results indicate that 13 of the 17 objects
are previously unrecognized Seyfert galaxies. Of the four star-forming non-Seyfert galaxies found in this sam-
ple, three are incorrectly identified as X-ray sources. Only one H !I galaxy is a confirmed X-ray source, but it
has Lx _ 1042 ergs s-_ and is only about twice as luminous as the most luminous normal spirals detected
previously at X-ray wavelengths. Thus, there are no H II galaxies with Lx substantially in excess of 10 `*2 ergs
s i, and claims of a new class of X-ray-luminous spiral galaxies are not supported by this study.

Subject headings: galaxies: Seyfert galaxies: starburst X-rays : galaxies

1. INTRODUCTION

The cosmic X-ray background (XRB) is thought to originate
from the integrated emission of discrete sources. The main
weakness of this explanation is, however, that the character-
istic spectra of known classes of extragalactic X-ray emitters
are all considerably softer than the spectrum of the XRB itself.
Since active galactic nuclei (AGNs) are the dominant class of
extragalactic X-ray sources at high fluxes, it is commonly
believed that they are responsible for the vast majority of the
XRB. However, the space density and correlation length scale
of AGNs, in addition to their typical broad-band X-ray
spectra, are incompatible with an XRB origin in which AGNs
contribute more than ~ 50% of the 2-10 keV flux (Fabian &
Barcons 1992, and references therein). Furthermore, the best
estimate to date of the soft X-ray luminosity function of AGNs
(Boyle et al. 1993) rules out AGNs producing all of the XRB
below 2 keV.

The contribution of star-forming galaxies to the XRB has
been frequently considered, at both soft and hard X-ray ener-
gies (Persic et al. 1989; Griffiths & Padovani 1990; Lonsdale &
Harmon 1991; Fruscione & Griffiths 1991; Rephaeli et al.
1991; Green, Anderson, & Ward 1992; David, Jones, &
Forman 1992). The most plausible scenario for such a contri-
bution, suggested by Griffiths & Padovani (1990), proposes
that galaxies undergoing bursts of star formation in regions of
low metallicity could spawn enough luminous high-mass X-ray
binaries to have both high-integrated X-ray luminosities
(> 1042" ergs s 1) and spectra well matched to the spectrum of
the XRB. Possible examples of such starburst galaxies have
surfaced in a recently published study of infrared- and X-ray--
selected galaxies, which has claimed to find a new class of
X-ray-luminous, "normal" (non-AGN) galaxies (Boiler et al.

t Visiting Astronomer, Kitt Peak National Observatory, National Optical
AstronomyObservatories, which is operated by AURA, Inc..under a coopera-
tive agreementwith the National ScienceFoundation.
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1992). In this Letter we present the results of our investigation
of these allegedly normal spiral galaxies with extreme X-ray
luminosities.

2. SAMPLE SELECTION AND OBSERVATIONS

The targets for this study were selected from Boller et al.
(1992), who cross-correlated the ROSAT All-Sky Survey
(RASS) with the IRAS Point Source Catalog (PSC). A total of
244 IRAS galaxies were found to be positionally coincident
with ROSAT X-ray sources (within 100"). Optical identifica-
tions and classifications for most of these objects were found in
the NASA/IPAC Extragalactic Database (NED). For 104 gal-
axies with published redshifts, the X-ray luminosity Lx in the
0.1-2.4 keV band was determined. Surprisingly, 20 of the 67
galaxies for which Lx exceeds 1042 ergs s -_ were reported as
normal spirals or starbursts, despite X-ray luminosities that
are characteristic of Seyfert galaxies. These 20 objects, with Lx
ranging from ~2 x 1042 to _3 × 1044 ergs s 1, are several to
several hundred times more luminous than the brightest spirals
observed with the Einstein Observatory, and two to four orders
of magnitude more luminous than typical spiral galaxies
(Fabbiano 1989). Such remarkable high-energy luminosities
represent a challenge to our current understanding of the pro-
duction of X-rays in ordinary spirals. If their classifications are
correct, the existence of high-L x normal galaxies bears impor-
tant implications for the problem of the XRB. An important
first step toward understanding the true nature of the 20
X-ray-luminous spirals must be reliable spectroscopic classi-
fication.

We observed 13 high-L x IRAS/ROSAT galaxies, primarily
using the KPNO 2.1 m telescope and Goldcam CCD spectro-
graph, but also with the Shane 3 m telescope and Kast spectro-
graph at Lick Observatory and with the CTIO 4 m telescope
and RC spectrograph. The spectra have sufficient resolution
(4-7 A full width at half-maximum [FWHM]) and wavelength
coverage (most extend from _ 3700 to 7400 A) to allow us to
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TABLE 1

THE HIGH L x SAMPLE

log L x

IRAS Name Other z (ergs s t) Ao..x Classification Reference Comments

01161 + 1443 ......... UGC 838 0.0229 42.25 66" H n 1 Possible chance coincidence

01590-3158 ......... Fairall 1077 0.0463 42.70 14

06280+6342 ......... UCG 3478 0.0123 42.84 79 Sey 1 2 Possible chance coincidence

10126+7339 ......... NGC 3147 ('1.0096 42.25 8 Sey 2 1, 3 FWHM ([N n], H:zl _ 400 km s-

10257-4338 ......... NGC 3256 0.0090 42.27 9 H 11 4 ...

11353-4854 ......... 0.0172 42.73 17 Sey 1.9 1

11395 + 1033 ......... NGC 3822 0.0203 42.27 34 Sey 2 1 FWHM [[N I1], H_t) _ 400" km s -1

12323-3659 ............ 0.0302 42.91 4 Sey 2 1 Line widths = 440 480 km s- 1

12393+3520 ......... NGC 4619 0.0231 42.81 5 Sey 1 1 Weak, broad Ha

13218- 1929 ............ 0.0172 42.47 13 Sey 1.9 1 ...

13224- 3809 ............ 0.0667 44.26 34 Sey I 5

14288+5255 ............ 0.0449 42.45 16 Sey 2 1 Line widths = 415 km s t
15083 + 6825 .........
15374--1817 ......... MCG -' 0"3-04-004 0.0582 43.07 11 Sey 1.8 1 ...

0.0235 42.41 20 Sey 1 6

15564+6359 ......... Kaz 49 0.0300 42.83 12 Sey 1.9 1, 7 Weak, broad Ha component, FWHM = 1150 km s -1

16137+3618 ......... ... 0.0919 ... 85 H H 1 Chance coincidence with star

16155+6831 ......... IC 1215 0.0251 69 H It 1 No longer in RASS

17104-7305 ............ 0.0172 42175 50 ......

19463 5843 ......... 0.0540 44.26 38

520""21582+ 1018 ......... Mrk 0.0268 42.56 60 Sey"l.9 I, 8 Possible chance coincidence

REFERENCES.- -{I} This Letter; (2) de Grijp et al. 1992; (3) Kennicutt 1992; (4) Armus et al. 1989:(5) Boiler et al. 1993; (6) Kirhakos & Steiner 1990; 17) Yegiazarian

& Khachikian 1988; (8) Lonsdale el al. 1992.

classify accurately each object. For four additional high- L x

spirals, we found spectra in the literature sufficient for accurate

classification, bringing the total number of object classi-
fications reexamined here to 17.

3. SPECTROSCOPIC CLASSIFICATION

The classification of an emission-line galaxy depends on the
velocity widths and intensity ratios of the emission lines

observed in its optical spectrum. Unfortunately, there is no

single prescription for this task; therefore, we adopt the follow-

ing guidelines. Emission lines broader than _300 km s t

FWHM--too broad to result solely from a spiral galaxy rota-

tion curve, and indicative, therefore, of a massive object in the

nucleus--earn a galaxy an AGN classification. A galaxy whose

emission-line flux ratios indicate that the ionizing continuum is

harder than that produced by hot stars (Veilleux & Osterbrock

1987; Filippenko & Terlevich 1992) is also classified as an

AGN, regardless of its line widths. We require that an object

exhibit both narrow emission lines and H 11 region-like line

flux ratios to be classified as an H 1I galaxy. Herein we refer to

all non-AGN spiral galaxies (starbursts and more quiescent

star-forming galaxies) collectively as H n galaxies, placing

emphasis on the common mechanism powering their emission

lines--hot stars rather than their star formation rates.

Table 1 summarizes the available spectroscopic data, our

classification and its basis, and the relevant references for each

of the high-L x galaxies. Our new optical spectra are displayed

in Figure l.We find that 13 objects are, in fact, AGNs; the
remaining four are indeed H !I galaxies with putative X-ray

luminosities in excess of 1042 ergs s- L. However, as we discuss

below, the identification of three of these H n galaxies with

ROSA T X-ray sources is doubtful.

4. CHANCE COINCIDENCES

Boiler et al. included in their sample all cases for which the

IRAS/ROSAT position offset is less than 100" and acknow-

ledged that a fraction of the IR/X-ray coincidences must arise

by chance. The distribution of optical/X-ray position offsets

(very similar to the distribution of IR/X-ray offsets) provides

the best means for determining which entries in the sample are

likely to be chance coincidences. RASS sources are located

within 20" of their optical counterparts 70% of the time

(Brinkmann, Siebert, & Boiler 1994); thus, only one genuine

identification in the entire Boiler et al. sample of 244 should

have an optical/X-ray offset Ao/x as large as 60", assuming the

true distribution of Ao/x is Gaussian. Among the 20 high-Lx

spirals,five have Ao/x > 60". Either the chance coincidences are

concentrated in this subsample, or there are other systematics

affecting the Boller et al. RASS X-ray source positions. Table 1

lists the values of Ao_x for each high-Lx galaxy.

|RAS 16137+3618, which we observed to be an H n galaxy

(Fig. lj), is a clear example of a chance coincidence. Figure 2

(Plate L2) displays the optical finding chart with the IRAS

error ellipse and the RASS source position marked. Assuming

this to be a real IR/X-ray match, Boiler et al. reported that
Lx = 3 x 1043 ergs s-1 for this H Ii galaxy. Notice, however,

that the RASS source position falls directly on a bright star

(mv = 10.06) 85" away from the galaxy. The star is virtually

certain to be the X-ray source. Two of the AGNs, UGC 3478

and Mrk 520, and one H I1 galaxy, UGC 838, have Ao/x = 79",

60", and 66", respectively. If these are also chance coincidences,
the total number is consistent with the Boiler et al. estimate

that the chance coincidence rate for the high-Lx spirals should

be 20%. For the final large Ao/x object, IRAS 16155+6831 (an

H n galaxy), we have learned (T. Boiler 1994, private

communication) that the X-ray source has been deleted from

the X-ray catalog following a more recent processing of the
RASS data.

5. DISCUSSION

To summarize our census of 17 of the 20 high-Lx "' normal"

spiral galaxies in the Boiler et al. sample of X-ray-selected

IRAS galaxies, we find that 13 are actually AGNs. Four others

are H n galaxies. However, two of these H Ii galaxies are incor-
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rectly identified as X-ray sources, and the X-ray source orig-

inally associated with a third is not found in the current

version of the RASS. Two of the AGNs may be also incorrectly

identified as X-ray sources given their large Ao_x values. Thus,
misclassifications, chance coincidences, and other errors are

largely responsible for creating the illusion that a high fraction

of the objects in the Boiler et al. sample are normal galaxies

with extreme X-ray luminosities.

Objects in the literature, and therefore in NED, have been

classified for a variety of purposes using methods which differ

in quality and accuracy. Thus, NED cannot be relied upon as

the sole resource for establishing new classes of objects such as

the high-Lx spirals. Perusal of the spectra in Figure 1 imme-

diately reveals that several objects have Seyfert properties that

are quite subtle. It is no surprise that these were previously

misclassified as normal galaxies. The most dramatic case is

that of NGC 3147. Kennicutt (1992)included this galaxy in his

atlas as an example of a typical Sb spiral. Indeed, the emission

lines in the integrated light spectrum are narrow with H It

region-like ratios, since most of the emission line flux arises in

extranuclear H H regions. The nuclear spectrum, however,

indicates a strongly inverted [N tt]/'H_ ratio (only partially

affected by a stellar Hc_ absorption featurel and broad [N tt]

lines (FWHM = 404 km s-1). NGC 3147 is almost face-on, so

lines this broad must arise in an active nucleus, which,

although optically weak, is likely to be responsible for most of

the X-ray emission from this object.

In the case of NGC 3256, the sole high-Lx Htt galaxy for

which the identification with a ROSAT X-ray source is secure,

Lx = 2 x 1042 ergs s- 1. This is not substantially greater than

highest X-ray luminosities known previously for H It galaxies

(several 10 *l ergs s 1; Fabbiano, Kim, & Trinchieri 1992). All

of the objects withLx>3 x l042ergss i have turned out to

be Seyfert galaxies. This result stands even if the H It galaxy

UGC 838 is an RASS source, since it would have Lx = 1.8

x 10 *2 ergs s- t. Thus, we conclude that NGC 3256 is prob-

ably a resident of the high-luminosity tail of the X-ray lumi-

nosity function for normal H tl galaxies rather than a

representative of a new class of X-ray-luminous spirals. These

conclusions are supported by our larger followup study

(Moran et al. 1994) of the unclassified members of the Boller et

al. sample. All 51 objects observed to date are AGNs, stars, or

Htt galaxies with Lx < 1042 ergs s- 1.

The sources of X-rays in normal spiral galaxies consist of

accreting low- and high-mass X-ray binaries, supernova rem-

nants, diffuse emission from the hot phase of the interstellar

medium, and stars (Fabbiano 1989). If the X-ray emission in
NGC 3256 arises due to these same sources in a combination

similar to that in lower luminosity spirals, luminous H It gal-

axies such as this will have little impact on the XRB puzzle:

their X-ray spectra would be too soft to contribute much flux

to the background above _ 3 keV, where the spectra of known

classes of X-ray emitters and that of the XRB are most discrep-

ant. Analysis of the broad-band X-ray spectrum of NGC 3256

obtained by ASCA will settle this question (Moran & Helfand

1994). Despite these discouraging prospects, the picture for a

significant contribution to the XRB by H II galaxies as painted

by Griffiths & Padovani (1990) cannot be ruled out. The soft

X-ray selection of the Boiler et al. sample might easily miss Htt

galaxies with large amounts of intrinsic absorption and, there-

fore, hard emitted spectra. With the exception of a handful of

quasars, all the classified Boiler et al. objects we know of

(> 150) have modest redshifts (z < 0.15) due to the sensitivity

limits of the IRAS PSC and the RASS from which they were

drawn; thus, the possibility of a population of star-forming

galaxies at moderate redshifts with different spectral properties

remains. X-ray images deeper than the RASS will have to be

used to probe for X-ray-luminous H u galaxies at earlier

epochs.

We are extremely grateful to Bob Becker and Mike Era-

cleous for obtaining the Lick and CTIO spectra presented

here. This is Columbia Astrophysics Laboratory contribution
524.
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